Ease of Network
Programmability based on
Active LARA++ Components

IEE Savoy Place, London
November 2000

Stefan Schmid, Doug Shepherd
{s.schmid,d.shepherd@comp.lancs.ac.uk}

Lancaster University

Overview

= Motivation
= LARA++

 Qverview
* Architecture
* Design Objectives

= Ease of Active Programmability
= Performance Optimisations
= Conclusion

November 00 http://www.LandMARC.

Motivation (1)

= Active Code Execution

User Space / VM

Kernel Space

= Simplifies Safety

= Ease of Active Programmability | = Performance

= Trade-off?

Ease of Use

e Performance

November ’00

http://www.LandMARC.

What is the Problem?

Current User Space/VM Implementations:
 Virtual AN Architectures use socket interface
 Active Routers copy packets (up & down)

= Performance hit through multiple copy
operations

Proposed Solution:

Memory mapping physical memory in user
level virtual address space

November 00 http://www.LandMARC.net 4

LARA++ Overview

= Second generation active router architecture

= Programmable platform supports service
composition based on small components

= Active Components are ...
« dynamically (un)loaded onto LARA++ routers
 extending the functionality on the router
« flexibly integrated into packet processing chain

http://www.LandMARC. net 5

November ’00

LARA++ Architecture

= |Layering active network

specific functionality on Execution Environment
topofinode O Ery,

= Safety and security is O
achieved by a four-layer e O O C))
architecture Compoents ("))

= PEs provide process-like System APl
protection for active code |

= LARA++ implementation
IS split across kernel & Active NodeOS

uSer space

November 00 http://www.LandMARC.net 6

Core Design Objectives

= High Performance
» Native active code processing
- Fast data packet handling

= Ease of Component Development

* Developing ACs based on standard tools

* Flexible composition framework (allowing
development of “small” AC)

November 00 http://www.LandMARC.

Performance Optimisations

= Active Code Processing

 Native code execution rather than
interpretation

 AC executed within PE like shared or
dynamic link libraries

* Node safety based on sandbox

= Data Packet Handling

http://www.LandMARC.

System Call Control

Processing Environmenis

f h

Bootstrapper

User Space
{Ring 3)

Kernel Slﬂﬂ"‘r'-‘
(Ring 0)

LARA++ NodeOS

November 00 http://www.LandMAR

Performance Optimisations

» Active Code Processing

= Data Packet Handling

« Zero-copy packet handling

« Memory mapping of packet memory into
PE virtual address space

* Processing load approx. doubles
(with no optimisation)

http://www.LandMARC.

Data Packet Handling

Processing Environmenis
')
AC1
activate
B System API Scheduler
JSer apace
(Ring 3) \ Physical Memory
Kernel Space map “
(Fing u) _ memory
intercept/ pages
Network re—]ﬂ]ect
Stack

‘" 4—P| Packet Classifier

<€

November 00 http://www.LandMAR

Performance Optimisations

= Active Code Processing

= Data Packet Handling

» Zero-copy packet handling

 Memory mapping of packet memory into
PE virtual address space

* Processing load approx. doubles
(with no optimisation)

November 00 http://www.LandMARC.

Component Development (1)

= Convenient user space programming
= Standard languages
= Standard tools (compiler/debugger/IDE)

= Active Components are built like “normal”
shared/dynamic link libraries

= LARA++ APl is linked to Active Component
code like “standard” libraries

November 00 http://www.LandMARC.

Example AC Code

ACDLL_API int ACMai n(voi d)

{

[Initialise variables and define packet filter(s)]
I f (LRegi ster AC(&ACI nf o) == LARA FAI LURE)

return LARA FAI LURE;

while (Run) {

}

pLar aPacket = LRecei vePacket (&ACl nf 0) ;

pBuf fer = LGet Packet Buf f er (pLaraPacket, &buflLen);
pl Pv6Header = pBuffer + sizeof (TEt her net Header);
[Packet processi ng]

St atus = LSendPacket (&ACI nf o, pLar aPacket);

LUnr egi st er AC(&ACI nf 0) ;
return LARA SUCCESS;

November 00 http://www.LandMAR

Active Component Code

Processing Environmernis

-

System/Kemel DLLs
70000000

Dﬂ'ta‘.DLhS-

LARA++ API DLL

Active Companent DL 10000000

System/Kemel DLLs

Other DLLs
Active Component DLL X
LARA++ API DLL
Component
SIS0t Sohadler
Active Component Code Load strapper
G Library /

November 00 http://www.LandMAR

Component Development (2)

= Component Debugging and Testing

* “Minimal” LARA++ Node OS support can
be installed on Development Machine

* Debug Processing Environment provided

= Active Components can be debugged like
“normal” applications

November 00 http://www.LandMARC.

Conclusion

= User space active processing simplifies
programming and safety

= Performance trade-off for user space active
processing can be minimal

= | ARA++ achieves ...

 high performance through native code execution
and fast memory mapping

- ease of active coding based on standard
programming languages and development tools

November 00 http://www.LandMARC.net 17

