
http://www.LandMARC.net/

Ease of Network 
Programmability based on 

Active LARA++ Components
IEE Savoy Place, London 

November 2000

Stefan Schmid, Doug Shepherd
{s.schmid,d.shepherd@comp.lancs.ac.uk}

Lancaster University



November ’00 2http://www.LandMARC.net

Overview

Motivation
LARA++ 
• Overview
• Architecture 
• Design Objectives

Ease of Active Programmability
Performance Optimisations
Conclusion



November ’00 3http://www.LandMARC.net

Motivation (1)
Active Code Execution

PerformanceEase of Active Programmability
Simplifies Safety

Kernel SpaceUser Space / VM

Trade-off?

Ease of Use Performance



November ’00 4http://www.LandMARC.net

What is the Problem?

Current User Space/VM Implementations:
• Virtual AN Architectures use socket interface
• Active Routers copy packets (up & down)
Performance hit through multiple copy
operations

Proposed Solution:
Memory mapping physical memory in user 
level virtual address space



November ’00 5http://www.LandMARC.net

LARA++ Overview
Second generation active router architecture
Programmable platform supports service 
composition based on small components
Active Components are …
• dynamically (un)loaded onto LARA++ routers
• extending the functionality on the router
• flexibly integrated into packet processing chain



November ’00 6http://www.LandMARC.net

LARA++ Architecture

System API

Processing
Environment

Execution Environment

Active NodeOS

Active
Components

Layering active network 
specific functionality on 
top of node OS
Safety and security is 
achieved by a four-layer 
architecture 
PEs provide process-like 
protection for active code
LARA++ implementation 
is split across kernel & 
user space



November ’00 7http://www.LandMARC.net

Core Design Objectives

High Performance
• Native active code processing 
• Fast data packet handling

Ease of Component Development
• Developing ACs based on standard tools
• Flexible composition framework (allowing 

development of “small” AC)



November ’00 8http://www.LandMARC.net

Performance Optimisations

Active Code Processing 
• Native code execution rather than 

interpretation
• AC executed within PE like shared or 

dynamic link libraries
• Node safety based on sandbox

Data Packet Handling



November ’00 9http://www.LandMARC.net

System Call Control



November ’00 10http://www.LandMARC.net

Performance Optimisations

Active Code Processing

Data Packet Handling 
• Zero-copy packet handling
• Memory mapping of packet memory into 

PE virtual address space
• Processing load approx. doubles 

(with no optimisation)



November ’00 11http://www.LandMARC.net

Data Packet Handling



November ’00 12http://www.LandMARC.net

Performance Optimisations

Active Code Processing 

Data Packet Handling 
• Zero-copy packet handling
• Memory mapping of packet memory into 

PE virtual address space
• Processing load approx. doubles 

(with no optimisation)



November ’00 13http://www.LandMARC.net

Component Development (1)

Convenient user space programming
Standard languages
Standard tools (compiler/debugger/IDE)
Active Components are built like “normal”
shared/dynamic link libraries
LARA++ API is linked to Active Component 
code like “standard” libraries



November ’00 14http://www.LandMARC.net

Example AC Code
ACDLL_API int ACMain(void)

{

[Initialise variables and define packet filter(s)]

if (LRegisterAC(&ACInfo) == LARA_FAILURE)

return LARA_FAILURE;

while (Run) {

pLaraPacket = LReceivePacket(&ACInfo);

pBuffer = LGetPacketBuffer(pLaraPacket, &bufLen);

pIPv6Header = pBuffer + sizeof(TEthernetHeader);

[Packet processing]

Status = LSendPacket(&ACInfo, pLaraPacket);

}

LUnregisterAC(&ACInfo);

return LARA_SUCCESS;

}



November ’00 15http://www.LandMARC.net

Active Component Code



November ’00 16http://www.LandMARC.net

Component Development (2)

Component Debugging and Testing
• “Minimal” LARA++ Node OS support can 

be installed on Development Machine
• Debug Processing Environment provided

Active Components can be debugged like 
“normal” applications 



November ’00 17http://www.LandMARC.net

Conclusion

User space active processing simplifies 
programming and safety
Performance trade-off for user space active 
processing can be minimal
LARA++ achieves …
• high performance through native code execution 

and fast memory mapping
• ease of active coding based on standard 

programming languages and development tools


